1
Introduction

How do Russian authorities go about implementing their international environmental obligations? This question, indicating the present book’s main topic of study, implies that implementation is here understood as the political processes taking place at the national, and possibly the sub-national, level after the conclusion of agreements or establishment of regimes at the international level. In the literature on international environmental agreements, processes at the domestic level are receiving increased attention. After an initial main focus on regime formation, the literature has in recent years come to be dominated by studies of regime effectiveness and the implementation, including processes at the domestic level, of provisions laid down by international regimes. Moreover, the issue of regime linkages is also gradually coming to the fore, i.e., how various regimes are linked to each other normatively and structurally, and how national authorities economise efforts by giving the same agency responsibility for implementing the provisions of various international agreements. While the questions of regime effectiveness and linkages at the regime level are not explicitly discussed in this book, the study does aim at providing an in-depth analysis of implementation processes at the national and sub-national level in Russia, including the linkage of issues by agencies at these levels.

Why focus on Russia? To answer with a cliché, Russia is a former superpower, and still the world’s largest country, and hence deserves attention in all matters involving Russian interests or possible implications for the outside world of policy choices made in Russia. In the realm of environmental politics, this is particularly true: the outside world cannot simply fence itself off from transboundary
environmental problems originating in Russia. This leads us to a second reason for the choice of focus: post-Soviet Russia is, in an international context, particularly hard hit by environmental degradation and resource depletion. The plan economy of the Soviet Union did not pay sufficient attention to the sustainability of the environment and natural resources and large parts of the country’s natural environment were in a dire state when the Union was dissolved in 1991. Several of these problems, in particular air pollution and the danger of nuclear radiation, are of a transboundary character and of such gravity that they pose serious threats to the outside world. Moreover, post-Soviet Russian politics have more than anything been characterised by chaos and unpredictability; all the more interesting is it then to see whether relatively stable policy patterns can be found across various cases in Russian environmental politics.

Finally, although there has been a certain amount of attention in the literature on the implementation of international environmental agreements in so-called transition economies, there has been little systematic study of such implementation processes in Russia that covers more than a few areas and analyses of more overarching political development trends in the country. While students of international environmental politics have tended to concentrate on Western states and countries in the third world, observers of Russian politics have generally been preoccupied by following the day-to-day political battle in Moscow and the Russian regions, and have only to a very limited extent delved into specific areas of politics such as environmental issues. Hence, the present study seeks to fill a gap in the existing literature by providing both a systematic in-depth analysis of various cases from the management of natural resources and the environment and linking the discussion closely to general trends in contemporary Russian politics.

The book includes case studies from the fields of fisheries management, nuclear safety and air pollution control in Northwestern Russia, here understood as Murmansk and Arkhangelsk Oblasts, and, to some extent, also the Nenets Autonomous Okrug (see Figure 1.1). The Russian Federation inherited the federal structure of the Soviet Union and the Russian Soviet Federative Socialist Republic (RSFSR) and today consists of 89 federal subjects. The relationship between Moscow and the federal subjects has been a main issue of contention in Russian politics since the establishment of the Federation in 1991. Hence, the division of responsibility between federal...
and regional authorities will necessarily be a major concern in a study of the implementation of international environmental obligations in the regions of Russia, as will co-ordination of work between various agencies at both the federal and the regional level. Northwestern Russia is a good case in point for an in-depth analysis since it in many respects represents a microcosm of the Russian Federation. Most important in this context, it epitomises an ‘exaggerated’ version of Russia as a whole with its abundant natural resources and extremely grave environmental conditions.

Figure 1.1 Northwestern Russia

What is the problem?

If asked to characterise the northwestern part of the Russian Federation in one or two phrases, it would be difficult to avoid a depiction of the region as both blessed with extremely bountiful natural resources and, at the same time, bedevilled by grave environmental problems. The region, a northern periphery partly located north of the Arctic Circle, owes the existence of its human settlements largely to the presence of natural resources. In the southern parts of the region, mainly in today’s Arkhangelsk Oblast, forestry has for centuries constituted the foundation for life.14 In the more barren Murmansk Oblast, which geographically corresponds to the Kola Peninsula, fisheries and mining provided the industrial foundation for the creation of large human settlements after World War I, rendering...
the region the most densely populated area of the Circumpolar Arctic during the last half of the twentieth century.15 The fishing grounds of the adjacent Barents Sea are among the most productive in the world, and the mineral deposits of the Kola Peninsula, mainly iron ore, nickel and apatite, are remarkable for their richness.16 From the 1920s onwards, massive fishing fleets were built up in the region and, at the time of the break-up of the Soviet Union, Murmansk had the largest fish-processing plant in the entire Union.17 Town names such as Nikel and Apatity, for their part, indicate the importance of the mining and metallurgical complex in the region.

The extraction of natural resources and the accompanying military build-up have, however, taken place at the expense of environmental considerations. Since the 1990s, Northwestern Russia has been more renowned for its environmental degradation than for its abundant resources.18 Since Western journalists were gradually given easier access to this heavily militarised region from the mid-1980s, the black tree stumps of the dying forests around Nikel and Monchegorsk have come to symbolise the sullen environmental state of Russia to many in the West. The nickel smelters of these two towns had virtually killed the forests surrounding them and served as sources of pollution also for the neighbouring Nordic countries and other parts of Russia. ‘Stop the death clouds!’ became the slogan of environmental organisations in the Nordic countries in the early 1990s. The Nordic countries had plans for gigantic assistance programmes to reduce the pollution spewing out of the production plants of the mining and metallurgical complex of Northwestern Russia, but nothing has come of these plans so far.19 Financial hardship has forced the plants to cut back on activities in recent years, though without affecting the alarming rate of air pollution in the European Arctic to any significant extent.

Throughout the 1990s, another environmental threat in the region upstaged air pollution as a focus of public concern, namely the danger of radiation from nuclear installations, discarded nuclear vessels, radioactive waste and spent nuclear fuel. The fire on board and subsequent sinking of the nuclear submarine \textit{Komsomolets} of the Russian Northern Fleet southwest of Bear Island in the Barents Sea in April 1989 was a further wake-up call for the European public to the danger of nuclear radiation from nuclear-powered vessels stationed in Northwestern Russia.20 Towards the end of 1990, rumours emerged that the Soviet Union had been dumping radioactive material in the
Barents and Kara Seas. The rumours were officially confirmed in a Russian parliamentary report a few years later (Yablokov et al. 1993). A major problem in the latter half of the 1990s was the build-up of radioactive waste and spent nuclear fuel in Northwestern Russia. Existing storage facilities were full, and there were no safe vehicles to transport the radioactive material out of the region for reprocessing or permanent storage. Moreover, financial constraints have forced the Northern Fleet to decommission large quantities of nuclear-powered vessels in recent years. Rumours are also circulating about the unsafe functioning of vessels still in service (Hønneland and Jørgensen 1999a). The Kursk accident of August 2000, albeit mainly a human tragedy, functioned as a reminder of the potential dangers residing in the Northern Fleet’s nuclear-powered vessels, not least to the environment. Although radiation levels in the region are at present low, there are considerable risks connected with the unsatisfactory storage of radioactive waste, decommissioned nuclear submarines awaiting dismantling and the continued operation of unsafe nuclear power installations, notably the Kola Nuclear Power Plant at Polyarnye Zori.

Finally, signs of resource depletion have recently been emerging in the region, most notably in the Barents Sea fisheries. These fisheries, managed bilaterally by Russia and Norway since the mid-1970s, had for many years been seen as a management success. At the turn of the millennium, however, the Norwegian–Arctic cod stock, by far the most commercially important species in the area, appeared to be in severe crisis. Some would have it that the situation is similar for the management system itself due to the dire state of its main object of regulation. There are indeed reasons for such an allegation: scientists are uncertain as to the size of the stock; managers do not follow the advice of the scientists in the establishment of quotas; and the enforcement system, at least on the Russian side, seems poorly fit to keep track of actual catch levels and avoid fishing of juvenile specimens. As will follow from Chapter 4, many of these problems can be directly related to more general developments in Russian society and politics.

What is to be implemented?

The environmental problems of Northwestern Russia are directly or indirectly addressed by a number of international treaties, agreements, regimes and other co-operative arrangements. Some of these are
global instruments that happen to have implications for the particular
problems of the region; others are specifically aimed at solving them.
In some cases, specific arrangements are linked to more general instru-
ments at the global level. Moreover, some are ‘hard’, legally binding
arrangements and others ‘softer’ approaches of a more programmatic
character. Both legally binding and non-binding instruments are
included in the present study.24

An overview is given below of the international agreements and
regimes whose implementation is studied in the cases used in this
book. It differentiates between arrangements at the global, regional
and bilateral levels.25 The list is not meant to be exhaustive, but rather
to include those instruments considered of most importance to the
problems at hand. The main selection criterion is that the arrange-
ments must have provisions that require attempts at influencing the
behaviour of target groups located in Northwestern Russia.

Fisheries management
The major global instrument underlying systems for marine fisheries
management throughout the world is the 1982 Law of the Sea Con-
vention (LOSC) (United Nations 1982), which entered into force on
16 November 1994. The Convention, with its 320 articles and 9
appendices, deals with a range of issues related to the use and man-
agement of the world’s ocean areas.26 Most important for fisheries
management is the introduction of the principle of 200-mile exclusive
economic zones (EEZ). This implies that coastal states are given ‘sov-
ereign rights for the purpose of exploring and exploiting, conserving
and managing the natural resources’ in these zones (United Nations
1982, Article 56[1]). With the rights follows the *obligation* to secure
reasonable exploration, exploitation, conservation and management
of the resources. For instance, fish stocks are to be maintained at a
level that can produce *maximum sustainable yield* (MSY), i.e. the
level at which the greatest quantity of fish can be caught annually
without the total size of the stock being reduced. Moreover, coastal
states are required to promote the objective of optimum utilisation of
the living resources of its EEZ, and to establish total allowable catches
(TACs) for each fish stock within its EEZ. Finally, coastal states are
obliged to co-operate in the management of shared stocks.

More recent global fisheries agreements tend to focus mainly on
the management of fisheries taking place in high seas areas, i.e.
beyond 200 miles from shore. They include the 1995 Fish Stocks
Agreement (United Nations 1995), which, *inter alia*, foresees the establishment of regional or sub-regional organisations or arrangements for the management of marine resources on the high seas27 – and two FAO documents: the FAO Compliance Agreement of 1993 (Food and Agriculture Organization 1993) and the FAO Code of Conduct for Responsible Fisheries of 1995 (Food and Agriculture Organization 1996). The Compliance Agreement sets out the responsibility of the flag state and includes provisions on the maximisation of information about high-seas fishing activities. The Code of Conduct is a non-binding instrument which promotes a responsible approach to all aspects of fishing.

In the Barents Sea, both Norway and Russia established their EEZs in 1977. This led to a transition from multilateral negotiations for the Barents Sea fisheries under the auspices of the Northeast Atlantic Fisheries Commission (NEAFC) to bilateral negotiations between coastal states with sovereign rights to fish stocks. To formalise these mutual fishing rights and, more importantly, to establish a common management regime suitable to secure the fish stocks of the area, Norway and the Soviet Union entered into several bilateral fishery co-operation agreements in the mid-1970s. The most important agreements on the establishment of the management regime are the mutual agreements of 11 April 1975 (Stortinget 1975) on co-operation in the fisheries sector and of 15 October 1976 (Stortinget 1976) on mutual fisheries relations, the so-called framework agreements.

The Norwegian–Russian management regime for the Barents Sea fish stocks defines objectives and practices for co-operative management between the two states within the fields of research and regulations, and, since 1993, also enforcement. The co-operation between Russian/Soviet and Norwegian scientists in the mapping of the Barents Sea fish resources dates back to the 1950s.28 It is now institutionalised within the framework of the International Council for the Exploration of the Sea (ICES). The Joint Norwegian–Russian Fisheries Commission, consisting of bureaucrats, scientists and representatives of the fishing industries of the two countries, convenes at least once a year to establish TACs for the joint fish stocks of the Barents Sea: cod, haddock and capelin. Cod and haddock are shared on a 50–50 basis, while the capelin quota is shared 60–40 in Norway’s favour. In addition, quotas of the parties’ exclusive stocks are exchanged. After the sessions in the Joint
Commission, the two parties conduct further quota exchanges in bilateral negotiations with third countries. An enforcement co-operation between Norway and Russia in the Barents Sea fisheries has been in operation since 1993. A Permanent Russian–Norwegian Committee for Management and Enforcement Co-operation within the Fisheries Sector was established under the Joint Commission that year. In addition to administering enforcement co-operation, it has undertaken several more comprehensive tasks, such as elaborating a uniform system of conversion factors, joint routines for the closing and opening of fishing grounds, and a co-ordinated introduction of obligatory use of selection grids in the cod fishery. Moreover, the Permanent Committee functions as a forum for discussion and clarifications between the parties in the periods between sessions in the Joint Commission.

Several regional fisheries regimes and agreements are also of relevance for Northwestern Russia. Although NEAFC lost much of its significance after the introduction of the EEZs and coastal state management authority to within 200 miles, it still exerts a certain regulation responsibility in high seas areas in the Northeast Atlantic. Moreover, Northwest Russian fishers occasionally participate in fisheries in the Northwest Atlantic, or the NAFO area (Northwest Atlantic Fisheries Organization 1978). In these ‘convention areas’, Russian authorities are obliged to ensure that convention obligations are complied with by Russian fishers. Finally, Russian participation in ICES obliges Russian scientists to contribute to the estimates of size and state of the fish stocks of the Northeast Atlantic, in particular in the Barents Sea.

Nuclear safety

As follows from the above description of environmental problems of Northwestern Russia, the threats of nuclear radiation emerge from several different sources in the region: dumped radioactive materials, decommissioned nuclear submarines, nuclear waste and spent nuclear fuel, as well as the unsafe functioning of nuclear installations. Hence, the handling of these various problem complexes is regulated by different instruments at different levels. The most important arrangements at the global level are found in attempts to secure the safe functioning of nuclear installations, mainly under the auspices of the International Atomic Energy Agency (IAEA). The statute of IAEA entered into force in 1957 and authorises the
Agency ‘to establish or adopt [...] standards for protection of health and minimisation of danger to life and property (including such standards for labour conditions), and to provide for the application of these standards’ (International Atomic Energy Agency 1957, Article III.A.6). The development of practical international co-operation in nuclear safety began in the early 1960s and reached its present wide-ranging scale in the 1980s and 1990s after the accidents at Chernobyl and Three Mile Island (Timerbaev and Iorysh 1999). The present IAEA regime on safe development of nuclear energy is based on a range of international legal instruments. Major elements of the regime are, inter alia: the 1963 Vienna Convention on Civil Liability for Nuclear Damage (International Atomic Energy Agency 1963);32 the 1974 Nuclear Safety Standards (International Atomic Energy Agency 1974);33 the 1986 Notification Convention (International Atomic Energy Agency 1986a);34 the 1986 Assistance Convention (International Atomic Energy Agency 1986b);35 the 1994 Convention on Nuclear Safety (International Atomic Energy Agency 1994)36 and the 1997 Joint Convention on the Safety of Radioactive Waste Management (International Atomic Energy Agency 1997).37

The 1972 London Convention (International Maritime Organization 1972)38 is the main instrument of the global dumping regime, banning the disposal at sea of hazardous waste, defined in terms of toxicity, persistence and tendency to bioaccumulate in marine organisms. Radioactive waste has been the most politicised of the issues involved (Stokke 1998, 2000b). Some items may not be dumped at all whereas others require special permits. Members of the regime are obliged to monitor and record their dumping activities and report them to the secretariat of the Convention, located with the International Maritime Organisation (IMO). The regime also includes provisions for enforcement and dispute settlement.

Four regional instruments stand out as relevant for nuclear safety issues in Northwestern Russia: the AMEC and CTR programmes in connection with discarded nuclear submarines and storage of spent nuclear fuel and other nuclear wastes; the MNEPR as a planned initiative to secure satisfactory framework conditions for foreign states engaged in nuclear safety projects in Russia; and BEAR as a more general co-operative framework aimed partly at environmental issues.

The Declaration on Arctic Military Environmental Co-operation (AMEC) (Ministry of Foreign Affairs 1996) was signed in 1996 by Norway, the Russian Federation and the USA.39 The parties stated
their mutual interest in reducing the deleterious effects of military operations to the Arctic environment, including the ecological risks associated with nuclear waste in the Arctic. Norway and the USA pledged their support in providing the Russians with technological and other assistance to help them de-fuel nuclear submarines removed from service, and to develop safe storage facilities for spent nuclear fuel and other nuclear wastes. The AMEC Declaration establishes an institutional framework for contact and co-operation between military authorities in the three states. By 1998, however, the agreement had little to show for itself in terms of practical results.

In the spring of 1998, US authorities decided to link AMEC with the Nunn–Lugar Co-operative Threat Reduction Programme (US Department of State 1992, 1993; Sawhill 2000). The CTR Programme was created by the US Congress in 1991 as a mechanism to assist the Soviet Union in complying with its obligations of arms reductions with the START I Agreement, and hopefully also new commitments under START II. It has provided more than USD 2,000 million to former Soviet states since 1991. One of the goals of the CTR Programme is to scrap 30 Russian ballistic missile submarines by 2001. The Russians currently have the capacity to scrap only a handful of submarines per year, the major obstacle being the de-fuelling process and dealing with the resulting waste and spent nuclear fuel. By linking AMEC and CTR, US authorities were able to provide a ready source of cash (USD 5 million for 1998) and indemnification from liability.

Finally, it can be discussed whether the Barents Euro-Arctic Region (BEAR) (Ministry of Foreign Affairs 1993) should be perceived as a regional regime of relevance to nuclear safety in Northwestern Russia. This co-operative arrangement between Norway, Sweden, Finland and Russia was established in 1993 and has both a national and regional component. It includes co-operation in a range of functional areas, but environmental issues are supposed to permeate the regime as a whole. A separate working group on the environment is also part of the regime. Stokke (2000a) argues that the BEAR co-operation is closely linked to other regimes at global, regional and bilateral level of relevance to the environment of the European Arctic.

Various bilateral activities of a programmatic character exist in the field of nuclear safety between Russia and other countries. The most comprehensive bilateral co-operation programme is the one with
In 1995, the Norwegian Government introduced a Plan of Action on nuclear safety in neighbouring countries (Ministry of Foreign Affairs 1995), aimed primarily at combating threats from Northwestern Russia. In the period 1995–99, NOK 343 million was allocated to activities supported under the Plan of Action. The activities have been categorised into four priority areas: (1) safety measures at nuclear facilities; (2) management, storage and disposal of radioactive waste and spent nuclear fuel; (3) radioactive pollution in northern areas; and (4) arms-related environmental hazards. In May 1998, a Framework Agreement was signed between Norway and Russia, stating that Norway shall render free technical assistance in the stated areas, and that Russia shall exempt the delivery of such assistance from taxes, customs duties and other fees and provide nuclear liability protections to Norway in ten projects identified as covered by the Agreement (Ministry of Foreign Affairs 1998). The Framework Agreement foresees the establishment of a Joint Russian–Norwegian Commission to co-ordinate and control its implementation. The Commission has so far convened once every year since 1998 and devoted most of its work to the implementation of the ten projects identified in the Framework Agreement. Finally, it should be mentioned that an expert group on investigations of radioactive pollution in the northern areas was established under the Joint Russian–Norwegian Environmental Commission (see next section) as early as in 1992.

Norway has taken a leading role in endeavours to create a Multi-lateral Nuclear Environmental Programme in the Russian Federation (MNEPR). The aim of this initiative is to secure satisfactory conditions for all participating countries in nuclear safety projects in Russia, e.g. related to indemnity against nuclear liability, access and oversight and exemption from taxes, customs and other fees. The current draft agreement is stricter than the Russian–Norwegian Framework Agreement as it includes provisions on personnel immunity, access and oversight. A Declaration of Principles was signed in March 1999 (Ministry of Foreign Affairs 1999), but a binding legal framework is still not in sight.

Air pollution control

International efforts to regulate emissions of environmentally hazardous substances into the air include instruments aimed at solving the problems of acid rain, depletion of the ozone layer and climate...
change, of which only the former will be discussed here. Related to the air pollution of Northwestern Russia, by far the most important international instrument is the 1979 UN Economic Commission for Europe Convention on Long-range Transboundary Air Pollution (LRTAP) (UN Economic Commission for Europe 1979). It addresses problems in Europe and North America concerning airborne pollutants, notably acid rain, and establishes a framework for co-ordinating pollution control measures and common emission standards. The contracting parties are to take into account the precautionary approach as set forth in the 1992 Rio Declaration. They must reduce annual emissions from a reference year, and emission limits are established for some selected sources. A monitoring system has been set up, and five substantive protocols have been negotiated under the regime: on NO\textsubscript{X} (1988) (UN Economic Commission for Europe 1988a); volatile organic compounds (1991) (UN Economic Commission for Europe 1991); sulphur (1994) (UN Economic Commission for Europe 1994); heavy metals (1998) (UN Economic Commission for Europe 1998a); and persistent organic pollutants (1998) (UN Economic Commission for Europe 1998b). The Soviet Union/Russian Federation has been an active partner in the LRTAP regime. Traditionally rather reserved towards co-operation with the West during the Cold War, in the late 1970s the Soviet Union was enthusiastic in its support of the LRTAP process, regarding it more in terms of ‘high politics’ than from an environmental point of view (Kotov and Nikitina 1998a). At present, Russia has ratified the Convention itself and the NO\textsubscript{X} Protocol and signed, but not ratified, the Sulphur Protocol.

The Arctic Environmental Protection Strategy (AEPS), a programme, legally non-binding document and process initiated by Finland in 1991, commits the eight Arctic states (Russia, Canada, the United States and the five Nordic countries) to undertake research and develop strategies for six priority environmental problems. A number of co-operative programmes have been established: (1) Arctic Monitoring and Assessment Programme (AMAP); (2) Protection of the Arctic Marine Environment (PAME); (3) Conservation of Arctic Flora and Fauna (CAFF); and (4) Emergency Preparedness, Prevention and Response (EPPR) programme. These programmes reported to the Ministers of the Environment of the Arctic countries, who, in turn, identified priority areas for further action. Four ministerial conferences were held under the AEPS framework between 1991 and
1997. The AEPS programmes have now been subsumed under the Arctic Council, a forum established by the Arctic states in 1996 (Arctic Council Declaration 1996). At the first meeting of the Arctic Council, a Regional Programme of Action for the Protection of the Arctic Marine Environment (RPA), developed by the PAME working group, was adopted. VanderZwaag (2000, p. 192) describes the adoption of the RPA as ‘small, soft steps in addressing land-based pollution in the Arctic’, observing at the same time that detailed actions are only recommended for persistent organic pollutants (POPs) and heavy metals, and that financial and technical commitments are left uncertain, although the need to assist the Russian Federation in taking pollution prevention actions is stressed.

Environmental co-operation between Russia and the Nordic states in the Barents Euro-Arctic Region (BEAR) (see previous section) and bilaterally is also of relevance for air pollution control in Northwestern Russia. Of particular importance is the Joint Russian–Norwegian Environmental Commission, which was established in 1988. Under the Joint Commission, comprising leading environmental agencies in the two states, several working groups have been established, including the Working Group on Airborne Pollution. The latter has developed an environmental monitoring and modelling programme for the border areas. The focus of capacity-enhancement efforts has been on the question of the modernisation of the Pechenganickel smelter, which was brought up at governmental level when the Environmental Commission was established.

The ‘clusters’ of agreements to be implemented

The various agreements to be implemented are listed in Table 1.1. In the management of the Northwest Russian fisheries, Russia has a rather clear set of international commitments. From the global instruments come obligations to manage the fish stocks with a view to maintaining Maximum Sustainable Yield (MSY), to establish TACs for the fish stocks in the Russian EEZ, to co-operate with Norway in the management of shared stocks, and to take responsibility for the activities of vessels under Russian flag in high seas areas. Regional arrangements demand participation by Russian scientists in ICES and enforcement of international standards in ‘convention areas’ such as NAFO and NEAFC. The obligations from the global, and partly regional level, are confirmed and specified in the bilateral regime with Norway. The framework agreements
provide basic guidelines for the co-operation. Decisions by the Joint Commission, partly interpreted, specified and adjusted in the Permanent Committee, give concrete obligations that are binding for the parties. This includes the obligation that joint decisions are enforced in due manner by Russian authorities and complied with by target groups.

Table 1.1 International obligations of the Russian Federation requiring implementation in its northwestern region

<table>
<thead>
<tr>
<th>Level/case</th>
<th>Fisheries management</th>
<th>Nuclear safety</th>
<th>Air pollution control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global</td>
<td>LOSC</td>
<td>(IAEA)</td>
<td>LRTAP (BEAR)</td>
</tr>
<tr>
<td></td>
<td>Fish Stocks Agreement</td>
<td>London Convention</td>
<td>(AEPS/Arctic Council)</td>
</tr>
<tr>
<td></td>
<td>Compliance Agreement</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Code of Conduct</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regional</td>
<td>ICES</td>
<td>AMEC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(NEAFC)</td>
<td>CTR</td>
<td>LRTAP (BEAR)</td>
</tr>
<tr>
<td></td>
<td>(NAFO)</td>
<td>(MNEPR)</td>
<td>(AEPS/Arctic Council)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(BEAR)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bilateral quota-sharing agreements with other states</td>
<td>Various programmatic activities with other states</td>
<td>Various programmatic activities with other states</td>
</tr>
</tbody>
</table>

a The agreements/regimes in parenthesis are not explicitly discussed in this book. Others are mentioned only sporadically in the case studies since their commitments are specified in agreements at lower levels. For instance, this is the case with the global fisheries agreements.

b The Commissions are here used to denote the entire bilateral regimes, including obligations issuing from levels higher (framework agreements) and lower (committees subordinate to them) than the Commissions themselves.

There is a rather uniform set of international commitments also in the case of air pollution control. Binding standards for emission reduction are provided by the LRTAP regime, and more programmatic instruments at the regional and bilateral level, such as BEAR, AEPS/Arctic Council and the Joint Russian–Norwegian
Environmental Commission, seek to assist Russia in fulfilling these obligations. A difference between the regimes for fisheries management and air pollution control is the relative weight of the different levels and the way in which commitments at various levels are linked. While the ‘lower’ levels of the air pollution control regime serve mainly to assist in the implementation of obligations from ‘higher’ levels, new and more concrete obligations follow from the ‘lower’ levels of the fisheries management regime. The global regime provides general principles which are given concrete contents at the regional, and primarily bilateral level. Hence, the bilateral level emerges with heavier weight in the fisheries management regime, or, alternatively, the global/regional level is more specific in the case of air pollution control than in fisheries management.

What are here grouped together as the ‘nuclear safety regime’ for Northwestern Russia, provide a far more loosely coupled set of obligations than is the case with fisheries management and air pollution control. This follows partly from the fact that nuclear hazards come from highly different sources, such as dumping of radioactive materials, stored nuclear waste and spent fuel and the unsafe functioning of nuclear installations. Various global and regional instruments are aimed at different problem areas: the IAEA at safety at nuclear installations, the London Convention at dumping activities and AMEC and CTR mainly at decommissioned nuclear vessels. Again, programmatic activities under BEAR and the Joint Russian–Norwegian Commission on Nuclear Safety supplement the global and other regional initiatives, mainly in terms of financial assistance. Concrete commitments come primarily from the ‘higher’ levels, but with the conclusion of the 1998 Framework Agreement between Russia and Norway, more specific international obligations emerge also from the bilateral level.

What is the wavelength?

Chapter 2 gives a more detailed account of the questions we seek to answer. One could at this point, however, ask why we have selected that particular set of questions. Is this primarily a book about the implementation of international environmental agreements or of particular sectors of Russian politics? What readership do we want to address and what body of scholarly literature do we want to make our findings relevant to? What’s the ‘wavelength’ of the book?
Despite its explicit theoretical focus on implementation of international obligations, we would claim that this is primarily a book about the peculiarities of Russian politics. It is our aim to extend the description and discussion of political processes beyond the point at which most accounts of Russian politics tend to stop. For instance, a common theme in studies of Russian politics in recent years has been the relationship between authorities at the federal and regional level. Such studies normally concentrate on legal, political and economic aspects of these relations. How much autonomy does the Constitution give to the Russian federal subjects? How ‘authoritative’ do the governors emerge before federal authorities? How much financial resources do the different regions manage to extract from the federal budget? Seldom are such discussions followed up by analyses of consequences for different sectors of politics: do the recent changes in the formal status of governors have any influence on fisheries management in the region? Does the bilateral agreement between a federal subject and Moscow have any impact on environmental politics in the region? In addition to these questions, it is our aim to provide detail and nuances to the debate about the relationship between various agencies at the same political level. How ‘federal’ are actually federal agencies located in the regions? Do the old Soviet industrial complexes in the region come through as allies of regional or federal authorities? Do some federal agencies appear to stand closer to regional authorities than to other agencies at the same level? The comparison of three different cases from one and the same region will hopefully reveal patterns that can serve as useful supplements to the more general literature on Russian politics.

On the other hand, we are still convinced that our discussion will prove relevant also to the theoretical implementation debate. While the described events must be ‘seen through the glasses’ of Russian politics – having a logic not necessarily applicable to political processes in other countries – the results are intended to add up to the accumulating knowledge on implementation of environmental agreements. Among the questions asked that are of relevance to the overarching theoretical debate are the following: how does the nature of the problem influence implementation? To what extent can implementation performance be explained by the nature of the international agreement? Is it decisive which national agencies are given responsibility for implementation? Does the inclusion of target groups or NGOs make implementation more effective?
How does financial support from other countries affect the implementation process?

At a somewhat less ambitious level theoretically – focusing on implementation in Russian regions rather than on implementation in general – one can compare the three cases of the book in a quest to reveal what kind of international agreements stand the best chance of being successfully implemented in the regions of the Russian Federation. Can differences between the cases be ascribed to the nature of the problems at hand or to the character of the international agreements? To the extent that the latter appears to be the case: is implementation improved by the existence of a ‘heavy’ global or regional commitment (securing, for instance, support from federal authorities that might view the implementation of such agreements as a national prestige)? Or would it prove easier to influence the behaviour of target groups in the region by use of more flexible programmatic initiatives at the bilateral level (hinging, as in the case of Northwestern Russia, on geographical proximity to foreign countries)? On the other hand: do non-binding arrangements at the global level have any effect at all? What about binding agreements at the bilateral level? And finally: can any lessons of a more general nature be drawn from the three cases about the linkage of binding and programmatic instruments and initiatives at the various political levels?

Hence, one can ‘tune in’ on our investigation from various points of departure: from a theoretical interest in implementation of international agreements or power constellations in Russian politics, or from a more practical interest in Russian politics or Arctic environmental affairs.

A note on methodology

The empirical data used in the case studies of the book are based on frequent field trips over several years to Murmansk and Arkhangelsk Oblasts and Moscow. A range of interviews have been conducted with representatives of federal and regional authorities, industries, NGOs and others.\(^{50}\) Regional media have also been very useful. We have elsewhere elaborated the difficulties of conducting social science research in Northwestern Russia (Hønneland and Jørgensen 1999a, pp. 6–7): as one of the most heavily militarised areas in the world and rather ‘conservative’ politically,\(^ {51}\) the region is, in general, characterised by suspicion towards curious foreigners. Since Russia has no
long-standing tradition of ‘free’ social science research, foreign researchers are often mistaken for journalists or even spies. Furthermore, foreign involvement in environmental affairs has, since the arrest of Aleksandr Nikitin in February 1996, come to be closely linked to espionage in the minds of many inhabitants of Northwestern Russia. In addition to a careful and gradual build-up of trust between us and potential sources of information, the well-known Russian method of using acquaintances has been indispensable also for this study. When no other source of information is mentioned, the data are built on personal interviews. Such interviews have been more important in the case studies on fisheries management and nuclear safety; the study of air pollution control is to a larger extent based on secondary literature. In order to protect our interviewees from potential problems at home, we have chosen not to reveal their identity.

An issue with methodological implications is how the temporal aspect of implementation is perceived. As will follow from Chapter 2, an important question is how the emergence of international obligations influences policy issues at the national and regional level in Russia. Are the observed patterns of behaviour the result of these particular obligations, or would they have occurred anyway? The international agreements under investigation here were concluded at different times, nearly half of them with the Soviet Union as contracting partner. Do we want to study political processes initiated immediately after the establishment of an international regime, or how the Russian Federation in recent years has gone about fulfilling these obligations? The primary focus of the investigation is on political processes during the 1990s. For one thing, it has proven difficult to obtain information about earlier events. Moreover, more than half of the agreements studied were concluded during this period. Our main argument for focusing on that decade is, however, the fact that major changes have taken place in Russian politics since 1990. First, a new state formation emerged in 1991, taking over most international obligations of the Soviet Union. Second, such a far-reaching restructuring of the political system of the state has taken place after its establishment that it becomes an interesting question in itself to investigate how these obligations have been handled along with the reorganisations.
Outline of the book

This chapter has given a preliminary introduction to the research questions addressed in the book and a brief overview of the international arrangements that are of most relevance to fisheries management, nuclear safety and air pollution control in Northwestern Russia. Chapter 2 provides more detail on the theoretical debate about the implementation of international environmental agreements, leading up to a more individualised approach to the issues under investigation here. Chapter 3 deals with recent developments in Russian politics at the federal and regional level, providing a backdrop to our subsequent discussion of the division of responsibilities in the implementation of international environmental commitments. The first part of this chapter focuses in particular on relations between Moscow and the regions. What does the 1993 Constitution say about these relations, and how have things developed in practice? Which legal, political and economic instruments do federal authorities have to influence development in the regions? The second part of Chapter 3 turns to political and economic developments in Northwestern Russia in recent years. In addition to providing background information about the history, economy and industry of the region, a major aim is to sketch the overarching power structures of Northwest Russian politics. What is the authority and power of the popularly elected governors (the regional executives), the oblast dumas (the regional legislative) and representatives of federal authorities in the region? Chapters 4, 5 and 6 constitute the main discussion of the book, addressing the Russian implementation of international agreements within fisheries management, nuclear safety and air pollution control, respectively. A similar set-up is followed in each of the three chapters, starting with a more detailed description of the problem at hand and the major target groups than has been provided in this introductory chapter. A discussion follows on the extent to which the particular international obligations are reflected in the existing legal basis of the Russian Federation. Next, attention is turned to the role of various actors in the implementation process: to what extent are federal authorities, regional authorities, the industrial complex, NGOs and others engaged in implementation activities? How is the power balance between various governmental bodies – representing, for instance, differing interests such as utilisation and conservation of resources and the environment – at the same level? The issues of
implementation performance and target compliance are addressed in the concluding sections of each case study.

Chapter 7 sums up the major findings of the study. Experiences from the implementation process of the three cases are compared and lessons extracted for the theoretical implementation debate in general, and for the implementation of international environmental agreements in Russia in particular.

Notes

1 See, e.g., Hanf and Underdal (1998) and Underdal and Hanf (2000).
3 See, e.g., Haas et al. (1993), Victor et al. (1998a), Wietestad (1999) and Young (1999). Another important volume is Weiss and Jacobson (1998), which focuses particularly on treaty compliance, but understands this concept as part of those processes we define as implementation (see Chapter 2).
4 See, e.g., Young (1996) and Stokke (2000a, 2001).
5 Normative linkages imply that norms developed within one regime affect the normative contents of another. By structural linkages we mean the transfer or imitation of components of one regime to or by another (Stokke 2000a).
6 For instance, Russia emits roughly as much carbon dioxide (CO₂) as all of Western Europe combined (Victor et al. 1998b, p. 3).
7 The concept of ‘transition economy’ – see, for instance, how Victor et al. (1998b, p. 3) speak of these countries’ ‘transition from central planning to a liberal, market-based society’ – indicates a development optimism on behalf of these states’ economy and politics that we find hard to apply to contemporary Russia. Instead, we speak of ‘post-Soviet Russian economy and politics’ to denote the period after the dissolution of the Soviet Union; whether recent developments will lead to a ‘liberal, market-based society’ remains to be seen.
8 A few cases of Russian implementation are compared in Victor et al. (1998a), but they are only to a limited extent considered in relation to major development trends in Russian politics. The works of Vladimir Kotov and Elena Nikitina deserve particular mention (Kotov 1994; Kotov and Nikitina 1996, 1998a, 1998b; Munton et al. 1999, Nikitina 1991, 1995; Zimmermann et al. 1998). See also Stokke (2000a, 2000b) for contributions dealing with implementation of international environmental agreements in Russia. International institutions for environmental aid to the former Soviet Union are discussed in Connolly
and List (1996) and Connolly et al. (1996). Darst (1997, 2001) provides detailed information on environmental management at the national level in Russia and on the country’s co-operation in this field with other states, but does not focus explicitly on the implementation of Russia’s international commitments.

9 It might, of course, be argued that this is an over-simplification; there is, for instance, a considerable literature on Russian nuclear safety politics. However, this literature is seldom linked in a systematic way to studies of overarching political processes in the country. Our point is that specialists on Russian politics tend to focus on political development trends of a more general nature than those found within different policy sectors.

10 Whether fisheries management can be classified as environmental politics, can of course be disputed. The management of natural resources and the environment are, however, often grouped together in policy studies. For the sake of language variation and simplicity, we occasionally speak of environmental politics in this book when we in fact have in mind the management of both the environment and natural resources.

11 The selection of cases for the study was based on a mixture of substantial and practical concerns. First, fisheries management, nuclear safety and air pollution control are among the most important environmental and resource issues for the region, as will be argued below. Second, the authors have prior in-depth knowledge on fisheries management (Hønneland 1998, 2000a, 2000b, 2001; Hønneland and Nilssen 2000, 2001; Jørgensen 1999) and nuclear safety (Hønneland and Jørgensen 1999a; Hønneland and Moe 2000; Sawhill and Jørgensen 2001), and to some extent also air pollution control (Hønneland et al. 1999), through earlier research projects on Northwest Russian politics.

12 See Chapter 3 for further elaboration on the geographical delimitation of the study.

14 See, e.g., Hønneland and Blakkisrud (2001).

15 For brief overviews of the history of the Kola Peninsula, see, e.g., Hønneland and Jørgensen (1999a, 1999b) or Hønneland and Blakkisrud (2001).

16 Ibid.

17 For an overview of Northwest Russian fisheries, see Hønneland (1998, 2000a).

18 See AMAP (1997, 1998) for authoritative reviews of the environmental state of the Russian Arctic.
Previous schemes were finally buried in 1997, but a new agreement on the modernisation of the Pechenganickel smelter was concluded between Norway and Russia in June 2001. The new project is scheduled to be completed in 2006–7; see Chapter 6.

The Chernobyl accident in April 1986 was, of course, the first wake-up call for the European public to the dangers of nuclear radiation. The Komsomolets accident, for its part, served to remind the public that radiation could emanate from other sources than power plants, still by far the most serious threat to the general public.

See Nilsen et al. (1996) for an authoritative assessment of the risk of radioactive contamination from the Russian Northern Fleet.

As mentioned above, the extraction of stationary resources on the Kola Peninsula has decreased in recent years due to economic problems at company level.

There are good arguments for not focusing exclusively on legally binding arrangements. First, it can be assumed that non-binding agreements are also sought to be implemented by states. Second, states vary in their propensity to conclude binding agreements, and many tend to enter into such agreements only when they feel certain that they will be able to comply with their obligations, this being particularly true for the Soviet Union/Russian Federation (Victor et al. 1998a). Hence, it can be expected that ‘implementation activities’ – efforts to change the behaviour of target groups – are no less prevalent in Russia for non-binding than for binding agreements.

Clearly, the categorisation could have been done in other ways. The sub-regional level, comprising co-operative arrangements between parts of various countries, has been omitted here. Bilateral arrangements, often regarded as ‘regional’ instruments, are here separated out as a category of their own.

See Churchill and Lowe (1999) for an overview and evaluation of the LOSC.

See, e.g., Balton (1996) or Hayashi (1995, 1996) for discussions of the Fish Stocks Agreement.

See Stokke et al. (1999) for a discussion of the Russian–Norwegian fisheries research co-operation.

For a review of the enforcement co-operation between Russia and Norway, see Hønneland (2000b).

This authority is nested in a revised Convention of 1982 (Northeast Atlantic Fisheries Commission 1982). The signatory states can also choose to delegate management responsibility for certain species in their EEZs to NEAFC. See Churchill (2001) for a discussion of the NEAFC regime.
See Fisher (1997) for a history and overview of activities of IAEA.

The Convention entered into force on 12 November 1977. It is signed, but not ratified by the Russian Federation.

This is a series of codes and safety guidelines intended to ensure the safe design, siting and operation of nuclear power reactors.

The Convention entered into force on 27 October 1986. It is signed and ratified by the Russian Federation.

The Convention entered into force on 26 February 1987. It is signed and ratified by the Russian Federation.

The Convention entered into force on 24 October 1996. It is signed and ratified by the Russian Federation.

The Convention has not yet entered into force.

The Convention entered into force on 30 August 1975. It has been signed and ratified by the Russian Federation.

The Regional Council is composed of representatives of the three northernmost counties of Norway, the two northernmost counties of Sweden and Finland, Murmansk and Arkhangelsk Oblasts, and the Republic of Karelia and Nenets Autonomous Okrug in Russia, as well as a representative of the indigenous people of the region, the Saami. At the national level, the Barents Council consists of government representatives from Russia, the five Nordic countries and the European Commission. For discussions of the establishment and performance of BEAR, see Dellenbrant and Olsson (1994), Stokke and Tunander (1994), Dahlström et al. (1995), Dellenbrant and Wiberg (1997) and Flikke (1998).

See Hønneland and Moe (2000) for an evaluation of the Plan of Action.

No global convention exists on land-based pollution control; the main initiatives to date have shunned a strict precautionary approach to pollution control (VanderZwaag 2000).

The Convention entered into force on 16 March 1983. It is signed and ratified by the Russian Federation.

See, e.g., Hanf (2000) for an overview of how the acid rain regime evolved.

The Protocol entered into force on 29 September 1997. It has not been signed by the Russian Federation.

The Protocol has not yet entered into force. It has not been signed by the Russian Federation.

Since both of us speak Russian, all interviews have been conducted without interpreter. This is assumed to enhance the validity of the interview data.

Murmansk is one of the few Russian cities where a Lenin statue still dominates a main thoroughfare – in this case the Lenin Prospekt.

Former Northern Fleet officer Aleksandr Nikitin was accused of espionage while collecting data on the nuclear risk on the Kola Peninsula for the Norwegian environmental NGO Bellona. Charges were finally dropped in 2000.

Cf. a recent news bulletin from Radio Free Europe/Radio Liberty under the heading ‘Murmansk a Hotbed of Foreign Spies’: ‘Foreign intelligence services have targeted Murmansk Oblast as a “priority” area for their activities, Nikolai Zharkov, head of the Federal Security Service (FSB) directorate in Murmansk Oblast, told Interfax North-West on 28 December [. . .] Zharkov also revealed that foreign governments frequently “pursue their own interests” under the cover of environmental organizations’ (RFE/RL Newsline, 30 December 2000).

Even ‘official figures’ have agreed to talk to us only after being introduced to us by common acquaintances.

In practice, it has not been very difficult to relate to this temporal aspect of implementation notwithstanding missing historical data. When, for instance, it can be established that a ‘department for convention areas’ exists under the fisheries enforcement agency Murmavyvod, the interesting point is not so much when it was established – it was obviously set up to take care of Soviet/Russian obligations under the NEAFC and NAFO Conventions – but that it exists, under whose political authority it is nested, and how it functions.